引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3003次   下载 3689 本文二维码信息
码上扫一扫!
分享到: 微信 更多
矩阵方程AX=B的正交(P,Q)-对称解
赵冰艳,张剑尘1
湖南科技大学 数学与计算科学学院,湖南 湘潭 411201
摘要:
定义了正交(P,Q)-对称矩阵的概念,通过矩阵的正交投影构造了它的结构,针对正交(P,Q)-对称矩阵的正交不变性,采用直接代入法把问题转化为求矩阵方程组的正交解,利用矩阵的正交三角分解得出了矩阵方程组有正交(P,Q)-对称解的充分必要条件,及通解的表达式.最后得出矩阵方程AX=B有正交(P,Q)-对称解的充要条件及通解表达式.
关键词:  正交(P,Q)对称解  正交投影  正交三角分解  通解
DOI:
分类号:
基金项目:湖南科技大学研究生创新基金资助项目(S130030)
Orthogonal (P,Q)-symmetric solution of matrix equation AX=B
Abstract:
Puts forward the concept of orthogonal (P,Q)- symmetric matrix, and the structure was constructed through the orthogonal projection.According to the orthogonal invariance of orthogonal (P, Q) - symmetric matrix,The problem was converted to solve orthogonal solutions of matrix equations by adopting direct substitution method. Applying the orthogonal triangular decomposition for matrix , necessary and sufficient conditions were derived and the general expression was gotten for the orthogonal solution to the matrix equations. The necessary and sufficient conditions were derived and the general expression was put forward for the orthogonal (P,Q)-symmetric solution to the matrix equation AX=B.
Key words:  orthogonal (P,Q)-symmetric solution  orthogonal triangular decomposition  orthogonal invariance  general expression