文章摘要
基于sharing函数具有死区初始化功能的 粒子群算法
Based on sharing function with dead-zone initialization of particle swarm optimization algorithm
  
DOI:
中文关键词: PSO算法  局部最优  死区初始化  MATLAB
英文关键词: PSO algorithm  local optimum  dead zone initialization  MATLAB
基金项目:湖南省科技计划项目(2011FJ6028)
作者单位
李白雅1,姜柏庄1,段晓磊2,黄强1 1.湖南科技大学 信息与电气工程学院湖南 湘潭 4112012.湖南科技大学 人文学院湖南 湘潭 411201 
摘要点击次数: 1136
全文下载次数: 1800
中文摘要:
      主要是研究粒子群优化原理,针对粒子群算法的中局部最优问题,提出一种具有死区初始化粒子群算法.首先通过观察MATLAB可视化下粒子的运行轨迹,分析粒子陷入局部最优时的特征,并针对运行过程中出现停滞现象的粒子群,以当前局部最优粒子为中心画定“死区”,并对“死区”内的粒子重新初始化.利用标准测试函数进行测试,仿真结果表明,改进后算法不仅具有良好的稳定性,而且提高了粒子突破局部收敛限制的能力,从而提高了粒子群搜索最优解的能力.
英文摘要:
      An algorithm of particle swarm optimization (PSO) provided with a dead zone initialization was put forward, according to the problem of PSO in the local optimum, research on particle swarm optimization. The aim was to breakthrough the limitation of local convergence, according to the observation on the MATLAB visual particle trajectories. It analysed the characteristics of particles trapped in local optimum, and run appear stagnation phenomenon in the process of particle swarm, painting for the center of the current local optimal particle "dead-zones", and initializing "dead-zones" in the particle. The results of simulation show that the optimization precision of PSO algorithm are improved, making use of the optimal standard of test functions of the algorithm improved.
查看全文   查看/发表评论  下载PDF阅读器
关闭