基于POA-VMD-LSTM的光伏发电功率预测模型
DOI:
作者:
作者单位:

1.华北电力大学(保定);2.河北经贸大学;3.国网陕西省电力有限公司经济技术研究院

作者简介:

通讯作者:

基金项目:

河北省社会科学基金项目


A Photovoltaic Output Power Prediction Model Based on POA-VMD-LSTM
Author:
Affiliation:

1.North China Electric Power University(Baoding);2.Hebei University of Economics &3.amp;4.Business;5.Economic and Technological Research Institute of State Grid Shaanxi Electric Power Company Limited

Fund Project:

Hebei Social Science Funding Project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为提高分布式光伏出力功率预测准确性,增强配网运行安全性和可靠性,提出一种基于鹈鹕算法、变分模态分解和深度学习的分布式光伏发电输出功率预测模型。首先,将天气情况聚类为晴天、阴天和雨雪三大融合天气;然后,采用鹈鹕算法(PelicanOptimizationAlgorithm, POA)优化变分模态分解(Variational Mode Decomposition, VMD)算法,利用POA自适应地确定VMD中的最优参数组合(k,a),自适应地分解光伏发电功率原始数据序列,降低数据噪声;最后,通过长短期记忆网络(Long Short-Term Memory, LSTM)模型对各子模态分量分别进行预测并叠加各子模态分量的预测值得到最终的光伏功率预测结果。选取某50kW分布式光伏电站2022年功率数据作为样本进行案例分析,结果表明,该模型提高了光伏输出功率预测精度,可为农村模糊气象地区分布式光伏出力功率预测研究提供有价值的参考。

    Abstract:

    In order to improve the accuracy of distributed photovoltaic output power prediction and enhance the safety and reliability of distribution network operation, a distributed photovoltaic output power prediction model based on Pelican algorithm, variational modal decomposition and deep learning is proposed. Firstly, the weather conditions are clustered into three kinds of fusion weather: sunny weather, cloudy weather and rain and snow. Then, the Pelican Optimization Algorithm (POA) is used to optimize the Variational Mode Decomposition (VMD) algorithm, and POA is used to adaptively determine the optimal parameter combination (k,a) in VMD, so as to adaptively decompose the original data sequence of photovoltaic power generation and reduce data noise. Finally, the Long Short-Term Memory (LSTM) model is used to predict each sub-mode component and the predicted values of each sub-mode component are superimposed to obtain the final photovoltaic power prediction result. The 2022 power data of a 50kW distributed photovoltaic power plant is selected as a sample for case study, and the results show that the model improves the photovoltaic output power prediction accuracy, which can provide valuable reference for the distributed photovoltaic output power prediction research in rural fuzzy meteorological areas.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-06-29
  • 最后修改日期:2023-12-12
  • 录用日期:2023-12-14
  • 在线发布日期: