双流移位时空图卷积:热成像动作识别
DOI:
作者:
作者单位:

湖南科技大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(No.61973109)


Two-stream Shift Graph Convolutional Network: Thermal Infrared Action Recognition
Author:
Affiliation:

Hunan University of Science and Technology

Fund Project:

National Natural Science Foundation of China Project (No.61973109)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文针对目前主要依赖可见光研究动作识别的趋势,充分利用热红外图像对光线变化不敏感的优势,提出了一种利用人体骨骼识别热红外视频中动作的轻量级算法,本研究贡献有:该算法使用YOLOv7-tiny进行目标检测,Alphapose进行姿势估计和动态骨架建模,最后利用时空图卷积神经网络提取时空特征;算法避免将整个视频视为一个整体,提取个人在不同时间间隔的动作以提高鲁棒性;为提高动作识别的准确性引入了双流移位图卷积网络(2s-ShiftGCN).2s-ShiftGCN的实验中,在InfAR-skeleton数据集上的Top-1准确率为88.06%,Top-5准确率为98.28%.在过滤kinetics-skeleton数据集上的Top-1准确率为55.26%,Top-5准确率为83.98%.

    Abstract:

    This study addresses the prevailing trend of relying predominantly on visible light for action recognition. Leveraging the advantage of infrared imagery's insensitivity to changes in lighting conditions, a lightweight algorithm for action recognition in thermal infrared videos is proposed. The contributions of this research include the utilization of YOLOv7-tiny for target detection, Alphapose for pose estimation and dynamic skeleton modeling, and GCN for the extraction of spatiotemporal features. By refraining from treating the entire video as a single entity and extracting individual actions at different time intervals, the algorithm significantly enhances robustness. To improve the accuracy of action recognition, a bistream shifted graph convolutional network (2s-ShiftGCN) is introduced. Experimental results of 2s-ShiftGCN show a Top-1 accuracy of 88.06% and a Top-5 accuracy of 98.28% on the InfAR-skeleton dataset. On the filtered kinetics-skeleton dataset, the Top-1 accuracy is 55.26%, and the Top-5 accuracy is 83.98%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-01-03
  • 最后修改日期:2024-03-04
  • 录用日期:2024-03-05
  • 在线发布日期: