doi:10.13582/j. cnki.1672 -9102.2014.02.019

2-(2-羟苯基)苯并咪唑-碱(土)金属 离子π复合物的电子结构及其分子内质子 转移的理论研究

徐百元,易平贵,汪朝旭,于贤勇,刘峥军,侯博,郝艳雷

(湖南科技大学 化学化工学院,理论化学与分子模拟省部共建教育部重点实验室, 分子构效关系湖南省普通高等学校重点实验室,湖南 湘潭 411201)

摘 要:对碱(土)金属离子(Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺和 Ca²⁺)与2-(2-羟苯基)苯并咪唑(HBI)所形成阳离子π复合物进行密度泛函 B3LYP/6-311++G(d, p)水平的理论研究.结果显示其有强阳离子-π作用.并分析了复合物 分子内氢键临界点的性质,相对能量和核磁计算结果显示碱(土)金属离子和溶剂化作用能增加或降低 HBI 分子内质子转 移过程的能全,可反转优势构型.

关键词:溶剂化效应;阳离子-π作用;分子中的原子(AIM);分子内质子转移;密度泛函理论(DFT) 中图分类号:0641.1;0621.1 **文献标志码:**A **文章编号**:1672-9102(2014)02-0089-05

Theoretical investigation on the electronic structure and intramolecular proton transfers of cation – π complexes of 2 – (2 – Hydroxyphenyl) benzoimidazole with alkali (alkali earth) metal ions

XU Bai - yuan, YI Ping - gui, WANG Zhao - xu, YU Xian - yong, LIU Zheng - jun, HOU Bo, HAO Yan - lei (Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract: The geometrical models of 2 - (2 - Hydroxyphenyl) benzoimidazole with alkali(or alkaline earth) metal ions were fully optimized by using B3LYP density functional theory at the 6 - 311 + + G(d, p) level. Results indicate that the cation $-\pi$ interaction between metal ions and HBI compounds are strong, some of these even reach a chemical bond strength. The energy barrier of the intramolecular proton transfer increased or decreased by Cation $-\pi$ interaction and injection solvent effects and these show in the relative energies display.

Key words: injection solvent effects; cation – π interaction; atoms in molecules(AIM); intramolecular proton transfer; density functional theory(DFT)

阳离子借助其正电荷与芳环中的 π 电子所形 成的阳离子 - π 作用及分子内或分子间质子转移 作用,在生物体中系普遍存在.这些作用对分子 识别,蛋白质核酸的结构功能及其稳定性,蛋白质 与配体相互作用等有重要影响,其相关研究已被 关注. 陈凯先等^[1]系统研究了阳离子与苯分子或 芳环基团间形成的阳离子 - π复合物的物理机制, Vyas 等^[2]理论计算了 Be²⁺, Mg²⁺, Ca²⁺与苯丙氨

收稿日期:2013-11-08

基金项目:国家自然科学基金资助项目(21172066);湖南省自然科学基金资助项目(11JJ2007);湖南省高校科技创新团队支持计划 资助项目([2012]318-17)

通信作者:易平贵(1961-),男,湖南邵阳人,博士,教授,主要从事分子构效与计算化学研究. E-mail: pgyi@hnust.cn

酸的阳离子 - π作用.本课题组研究了阳离子与 苯并噁唑类化合物的阳离子 - π作用及其分子内 质子转移过程^[3].阳离子与 π体系强烈的吸引作 用能改变配体分子电荷分布,其对质子转移互变 异构体质子转移过程的速度机理及其平衡关系等 必然会产生影响.

苯并咪唑类化合物具有抗癌,抗真菌,消炎,治 疗低血糖和生理紊乱等生物活性,在药物化学中 有重要研究价值^[4],也是重要的质子转移模型分 子^[5].但该类化合物的阳离子 - π 作用及其复合 物的质子转移规律目前研究较少.以2-(2-羟 苯基)苯并咪唑(HBI)作为配体分子,讨论其在碱 (土)金属阳离子 - π 作用下所形成复合物的分子 内质子转移机理.

计算方法

碱金属 M⁺ (Li⁺, Na⁺, K⁺) 和碱土金属 M²⁺ (Be²⁺, Mg²⁺, Ca²⁺)离子分别作用于 HBI 分子互变 异构体芳环 A, B 和 C 上方形成阳离子 - π 复合物 A - Mⁿ⁺, B - Mⁿ⁺和 C - Mⁿ⁺,如图 1 构型(共 36 种).在 B3LYP/6 - 311 + + G(d, p)理论水平上对 初始模型进行全优化和频率计算,并确定构型稳定 的共有 19 种.考虑溶剂化效应时采用极化连续反 应场(PCM)模型^[7].朱等人及本课题组^[1,3,6]的研 究表明 B3LYP/6 - 311 + + G(d, p)方法可较好地 用于碱(土)金属离子 - 苯复合物、碱(土)金属离子 - 苯并噁唑复合物电子结构的研究.本工作所考察 溶剂有 H₂O, DMSO, CH₃CH₂OH, C₆H₅NH₂, C₆H₁₂,单点能计算在气相优化构型基础上进行.复 合物结合能计算公式如下:

 $\Delta E = E_{MH} - (E_M + E_H) + BSSE + ΔZPVE.$ (1) E_M, E_H, E_{MH} 分别为单体 M,单体 H 和复合物 MH 的能量. BSSE 为基组重叠误差^[8], ΔZPVE 为 零点振动能的变化. 用 Gaussian03^[9] 自带的 NBO3.0 完成自然键轨道分析. 用 AIM2000 完成 了复合物分子内氢键的电子密度拓扑性分析.

 $M^{n+}=Li^+$, Na^+ , K^+ , Be^{2+} , Mg^{2+} , Ca^{2+}

图1 HBI 阳离子-π复合物初始模型(ENOL: 醇式; KETO: 酮式)

2 结果与讨论

2.1 HBI的分子静电势

计算所得 HBI 分子芳香 π 体系静电势如图 2 所示. 浅色表示负电势区域, 深色表示正电势区域. 据图 2 知, HBI 醇式构型 A 环和 C 环有明显 负电势区, 而 B 环偏向正电势. 酮式仅 C 环有强 负电势, A 环较弱, B 环则处于强正电势. 可预测 醇式的 AC 环及酮式 C 环上方是与 HBI 进行阳离 子 - π 作用的最佳作用位点, N,O 的强电负性可 引起负电势几何中心偏离.

2.2 复合物的几何构型与能量

表 1 所示为稳定阳离子 – π 复合物的几何参数和能量数据. 设碱(土)金属离子引起 HBI 芳环 扭曲变形角为 *T*. 对碱金属 M⁺离子而言 *T* 值较小 0.6~1.5, 趋势为 Li⁺ > Na⁺ > K⁺, 而碱土金属

图 2 醇式(ENOL)和酮式(KETO)的静电势图

 M^{2+} 离子的 T 值较大 1.2~16.7, 但变化趋势一 致: Be²⁺ > Mg²⁺ > Ca²⁺. HBI 扭曲变形能 E_d (单独 取 HBI – Mⁿ⁺复合物中 HBI 与自由态 HBI 相应构 型能量差)计算结果显示: M⁺离子 E_d 仅 2.48 ~ 6.82 kJ·mol⁻¹, 而 M²⁺离子 E_d 为 17.21~116.99 kJ·mol⁻¹. NBO 计算得 M²⁺离子的净电荷变化范 围: 0.17~0.70, M⁺离子为: 0.02~0.06. M²⁺离 子的电荷转移量约为 M⁺离子 10 倍.

相互作用能 ΔE 证实这一结论(见表 1), M⁺

离子的 ΔE 为 – 70.13 ~ – 195.38 kJ·mol⁻¹, M²⁺ 离子 ΔE 为 – 412.79 ~ – 1186.62 kJ·mol⁻¹. 基本 与文献[1]中报道的阳离子 – 苯复合物的值(表 1 括号中的值)吻合.分子间相互作用能一般不超过 – 80 kJ·mol⁻¹如氢键的键能^[3], M⁺离子的 ΔE 均大于 – 80 kJ·mol⁻¹(K⁺除外), 且 M²⁺离子和 Li⁺的 ΔE 值大于常见化学键键能.朱等^[1]解释除 涉及色散和静电作用外,这种强作用还涉及轨道 及电荷转移等作用.以上结果均与文献[1,3]中报 道的阳离子 – π 作用的结果相一致. 垂直距离^[1,3,10]相当. R_{\perp} 比相应金属离子的 R_{w} (C – M^{n+})小(如表 2 鲍林离子半径与碳原子的范德 华半径之和),说明金属离子与 HBI 芳环之间有强 阳离子 – π 相互作用. M^{2+} 离子和 Li⁺的 R_{\perp} 小于 其与碳原子的共价半径之和 R_{e} (C – M^{n+})值,表 明 M^{2+} 离子和 Li⁺与 HBI 不单是一般的相互作用, 已形成共价键. 计算复合物分子键级证实了这点 (如表 2),总键级: M^{+} 离子在 0.037 ~ 0.114 之 间, M^{2+} 离子右 0.342 ~ 0.971 之间,近似为单键 级, M^{2+} 离子与 HBI 已经部分成键.

阳离子与 HBI 垂直作用距离 R_ 与文献中的

表1	阳离子-π复合物的结构及能量参数	
----	------------------	--

	$HBI - M^{n+1}$	<i>T/</i> (°)	$E_{\rm d}$ /(kJ/mol)	R_{\perp}/nm	ΔZPVE/ (kJ/mol)	BSSE/ (kJ/mol)	$\Delta E/(kJ/mol)$	
	A – Li ⁺	1.40	3.99	0.185(0.184)	7.46	2.68	-163.35(-160.79)	
ENOL	A – Na ⁺	0.90	3.17	0.240(0.241)	3.56	3.61	-101.33(-100.00)	
	A – K ⁺	0.60	2.48	0.288(0.290)	2.28	1.53	-70.13(-67.95)	
	A – Be ^{2 +}	15.80	60.83	0.129(0.129)	9.36	3.20	-1102.19(-960.10)	
	A – Mg^{2+}	7.90	25.23	0.194(0.194)	3.30	3.79	-599.18(-494.17)	
	A – Ca ^{2 +}	1.50	17.21	0.234(0.237)	3.74	2.04	-412.79(-334.43)	
	${\rm B}-{\rm Be}^{2+}$	29.90	116.99	0.137	7.28	4.69	- 1006.30	
KETO	A – Be ^{2 +}	28.30	107.28	0.126	10.85	2.97	- 1081.91	
	A – Mg^{2+}	10.60	24.22	0.202	4.49	3.39	- 586.81	
ENOL	C – Li *	1.00	4.58	0.184	6.69	2.87	- 165.65	
	C – Na ⁺	0.80	3.63	0.240	3.01	3.69	- 104.13	
	C – K ⁺	0.60	3.17	0.287	2.06	1.67	-73.96	
	$\rm C$ – $\rm Be^{2+}$	15.40	62.49	0.129	6.13	3.23	-1111.51	
	C – Mg ^{2 +}	7.40	28.78	0.195	1.31	3.89	-603.46	
	$C - Ca^{2+}$	1.20	15.10	0.230	1.47	2.20	-419.33	
	C – Li *	1.50	6.82	0.185	11.17	2.83	- 195.38	
VETO	C – Na ⁺	0.90	5.47	0.238	6.84	3.67	- 128.90	
KEIU	$C - Be^{2+}$	16.70	57.44	0.130	15.02	3.34	-1186.62	
	C – Mg ^{2 +}	10.60	34.38	0.193	9.27	4.02	-669.02	
表2 金属 M ¹⁺ 的离子半径、共价半径及键级参数								
	鲍林离子半径/nm		共价半径/nm	$R_{\rm w}(C - M^{n+})/nm$		$R_{\rm c}$ (C – M ^{<i>n</i>+})/nm	维贝格键级°	
Li +	0.060		0.134	0.230		0.211	0.107~0.114	
Na ⁺	0.095		0.154	0.265		0.231	$0.046 \sim 0.052$	
K ⁺	0.133		0.196	0.303		0.273	$0.037 \sim 0.038$	
Be^{2} +	0.031		0.090	0.201		0.167	0.517~0.775	
${\rm Mg}^{2}$ +	0.065		0.130	0.235		0.207	0.525~0.971	
Ca ^{2 +}	0.099		0.174	0.269		0.251	0.342 ~0.353	

注:维贝格键级°中°为M^{**}离子总键级.

2.3 电子密度拓扑(AIM)分析

据分子内原子(AIM)理论^[11],对立体空间中 XYZ 方向维度的电子密度 $\rho(r)$ 进行二阶微分求得 的导数所组成的矩阵A,定义为 $\rho(r)$ 的 Hessian 矩 阵,若A的特征值为两负一正,为键鞍点(BCP), 表示原子间成键,若A的特征值两正一负,为环鞍 点(RCP),表明存在环状构造.BCP处 $\rho(r)$ 越大, 键越强^[3], BCP 处的 $\rho(r)$ 可表征键的性质,化学 键的性质也可取绝于 Laplacian 量 $\nabla^2 \rho(r) = \lambda_1 + \lambda_2 + \lambda_3$ 式中 λ 为A的特征值.据文献若在 X – H …Y 体系中,H…Y 间的 $\rho(r)$ 和 $\nabla^2 \rho(r)$ 分别在 0.002~0.04 a. u.和0.02~0.15 a. u.范围,说明 存在 BCP 点^[3].分析结果如表 3.复合物的 $\rho(r)$ 和 $\nabla^2 \rho(r)$ 基本处于氢键范围,分别是 0.028~

). 078 a. u. 和 0. 091 ~ 0. 142 a. u. , C – M $^{n+}$ 的 $ ho(r)$
值超了氢键范围的上限,为强氢键.
素3 键称与(H···O/N)的o(r) ∇^2 o(r) V 及 F

K J	WE +2	x(110/	(1) = p(1)	, $\nabla p(r)$	$V_{\rm c} \propto E_{\rm HB}$
		ho(r)/a.u.	$ abla^2 ho(r)$ /a.u.	$V_{\rm c}$ /a.u.	$E_{\rm HB}/(\rm kJ/mol)$
ENOL	HBI	0.049	0.115	-0.045	- 59. 333
	A – Li ⁺	0.040	0.102	-0.027	- 35.565
	A – Na ⁺	0.041	0.114	-0.037	-48.302
	A – K $^+$	0.042	0.114	-0.038	- 49. 462
	A – Be ^{2 +}	0.036	0.108	-0.031	-40.267
	A – Mg ^{2 +}	0.038	0.110	-0.033	-43.520
	A – Ca^{2+}	0.036	0.109	-0.031	- 40. 736
	$\mathrm{B}-\mathrm{Be}^{2+}$	0.032	0.099	-0.026	- 33. 508
	C – Li +	0.059	0.112	-0.059	- 76.827
	C – Na ⁺	0.057	0.113	-0.055	-72.138
	C – K $^+$	0.054	0.114	-0.052	-68.405
	$C - Be^{2+}$	0.078	0.091	-0.080	- 105.648
	$C - Mg^{2+}$	0.071	0.102	-0.072	-94.434
	C – Ca ^{2 +}	0.071	0.102	-0.072	-95.023
KETO	HBI	0.065	0.150	-0.066	- 87.124
	A – Be ^{2 +}	0.046	0.139	-0.042	- 54. 638
	A – Mg ^{2 +}	0.049	0.142	-0.045	- 59. 536
	C – Li ⁺	0.045	0.140	-0.041	- 53. 530
	C – Na +	0.046	0.140	-0.042	- 54.658
	C – Be ^{2 +}	0.028	0.106	-0.021	- 28.132
	$C - Mg^{2+}$	0.031	0.116	-0.025	- 32. 772

氢键的键能可表示为: $E_{\rm HB} = V_e/2$ (V_e 为电子 势能). A – Mⁿ⁺和 B – Be²⁺醇式和酮式分子的 $E_{\rm HB}$ 分别为 – 33.5 ~ – 49.5 kJ · mol⁻¹和 – 54.6 ~ – 59.5 kJ · mol⁻¹, 比 HBI 的 $E_{\rm HB}$ 值 (ENOL: – 59.3 kJ · mol⁻¹, KETO: – 87.1 kJ · mol⁻¹) 略小. C – Mⁿ⁺醇式和酮式分子的 $E_{\rm HB}$ 分别为 – 68.4 ~ – 105.6 kJ · mol⁻¹和 – 28.1 ~ – 54.7 kJ · mol⁻¹, 其 醇式 $E_{\rm HB}$ 值比 HBI 醇式 $E_{\rm HB}$ 大, 而其酮式 $E_{\rm HB}$ 值小 于 HBI 酮式 $E_{\rm HB}$ 值. 说明金属离子作用 A,B 环时 消弱 HBI 分子内氢键;与 C 环作用时,醇式氢键增 强,酮式氢键消弱. 键长越短,氢键越强,其质子 转移过程越容易进行^[3]. 几何结构计算结果表明 只有 C – Mⁿ⁺醇式分子内氢键的键长比自由态 HBI 醇式氢键短(ENOL:0.173 5 nm, KETO: 0.159 3 nm).可推测金属离子作用 A,B 环时引起 HBI 分 子内质子转移能垒升高起阻碍作用;作用 C 环时, 促进其 ENOL→KETO 质子转移历程,阻碍其逆过 程.可由质子转移异构体的相对能量图得到验证.

2.4 复合物的质子转移机理

图 3 显示 HBI 及其复合物在各溶剂中的相对 能量(醇式为基准),除H,0外,各溶剂中A-Be²⁺, A - Mg²⁺, C - Li⁺, C - Na⁺及 HBI 的最佳 构型为醇式, $C - Be^{2+} 和 C - Mg^{2+}$ 的最佳构型为酮 式. 在 H₂O 中, 仅 C - Be²⁺ 酮式最稳定, 其余醇式 最稳定. 以气相为例, 复合物质子 ENOL→KETO 转移过程中, A – Be²⁺和 A – Mg²⁺的正向能垒 $E_{\rm f}$ 比 HBI 高, 分别增加 20.73 kJ・mol⁻¹和 13.29 kJ • mol⁻¹. 逆向能垒 *E*, 小于 3 kJ • mol⁻¹, 表明金属 离子与 A 环作用时, 阻碍 2H 向 1N 的转移过程 (见图1); 而 C - Li⁺, C - Na⁺, C - Be²⁺和 C -Mg²⁺的 *E*, 低于 HBI, 分别降低 24.83 kJ・mol⁻¹, 21.06 kJ · mol⁻¹, 37.24 kJ · mol⁻¹和 39.07 kJ · mol⁻¹. *E*_r 明显增加, 分别为 9.37 kJ · mol⁻¹, 7.55 kJ · mol⁻¹, 45.06 kJ · mol⁻¹和 36.44 kJ · mol⁻¹. 说明金属离子作用于 C 环时, 促进其质子 转移过程,有利于2H向1N转移.即当金属离子 与环 C 作用对 HBI 基态分子内质子转移影响最明 显,可致稳定构型的反转.其中碱土金属离子作 用 C 环时, 优势构型将由原来的醇式变为酮式. 同时, 溶剂效应对复合物的优势构型也有重要影 响(如图3所示). 由此, 可通过改变金属离子或 溶剂来控制 HBI 分子内质子转移过程.

表 4 列出了 2H(见图 1) 的化学位移 δ (2H), 结果表明金属离子作用于环 C 对 2H 的化学位移 影响大于环 A,同为环 C 时,碱土金属离子 Be²⁺和 Mg²⁺对 2H 化学位移影响强于碱金属 Li⁺和 Na⁺.

表4 各质子转移体2H的¹H NMR 化学位移

ENOL	$\delta(2H)$	$\Delta(2H)$	TS	$\delta(2H)$	$\Delta(2H)$	KETO	$\delta(2H)$	$\Delta(2H)$
HBI	12.90	0.00	HBI	21.42	0.00	HBI	18.49	0.00
A – Be ^{2 +}	11.50	-1.41	A – Be ^{2 +}	20.94	-0.47	A – Be ^{2 +}	15.31	-3.18
A – Mg ^{2 +}	12.00	-0.90	$A - Mg^{2 + 1}$	21.58	0.16	$A - Mg^{2 + 1}$	15.81	-2.68
C – Li +	15.52	2.62	C – Li +	24.01	2.59	C – Li +	15.99	-2.51
C – Na ⁺	14.87	1.97	C – Na ⁺	23.78	2.36	C – Na ⁺	15.95	-3.62
$C - Be^{2+}$	19.11	6.21	$C - Be^{2+}$	22.88	1.46	$C - Be^{2+}$	13.48	-5.01
C – Mg ^{2 +}	17.83	4.93	C – Mg ^{2 +}	23.42	2.00	C – Mg ^{2 +}	13.68	-4.81

3 结论

对碱(土)金属阳离子与 HBI 的阳离子 – π 复合物进行密度泛函 B3LYP/6 – 311 + +G(d, p) 水 平的结构优化.结果显示 M²⁺离子形成的 π 复合物 更稳定.计算相互作用能表明,碱(土)金属离子与 HBI 有强阳离子 – π 作用,部分复合物达到化学键 的强度.核磁计算说明 M²⁺离子对 H 化学位移影响 强于 M⁺离子.碱(土)金属离子和溶剂化作用能改 变 HBI 分子内质子转移过程的能垒,致优势构型反 转,可控制 HBI 分子内质子转移过程.

参考文献:

- [1] Zhu W L, Tan X J, Shen J H, et al. Differentiation of cation - π bonding from cation - π intermolecular interactions: a quantum chemistry study using density - functional theory and morokuma decomposition methods [J]. Journal of Physical Chemistry A, 2003, 107(13):2296-2303.
- [2] Vyas N, Ojha A K. A study on interaction of Be²⁺, Mg²⁺ and Ca²⁺ with phenylalanine: Binding energies, metal ion affinities and IR signature of complex stability [J]. Vibrational Spectroscopy, 2011, 56(1):42 - 50.
- [3] 易平贵,刘峥军,汪朝旭,等.碱(土)金属离子与2-(3'-羟基-2'-吡啶基)苯并噁唑阳离子-π复合物及其分子内质子转移过程的理论研究[J].化学学报,2012,70(12):1347-1354.
- [4] 毛郑州,汪朝阳,侯晓娜,等. 苯并咪唑类化合物的合成

- 研究进展[J]. 有机化学, 2008, 28(3):542-547.
- [5] Vázquez S R, Rodríguez M C R, Mosquera M, et al. Excited – state intramolecular proton transfer in 2 – (3'– hydroxy – 2'– pyridyl) benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o – hydroxyarylbenzazoles[J]. Journal of Physical Chemistry A, 2007, 111(10):1814 – 1826.
- [6] Yi P G, Liu Z J, Wang Z X, et al. Effect of metal cations [Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺, and Ca²⁺] on the structure of 2 - (3' - hydroxy - 2' - pyridyl)benzoxazole: a theoretical investigation [J]. International Journal of Quantum Chemistry, 2013, 113(9):1316-1324.
- [7] Cossi M, Barone V, Cammi R, et al. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model[J]. Chemical Physics Letters, 1996, 255 (4-6):327-335.
- [8] Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies some procedures with reduced errors [J]. Molecular Physics, 1970, 19(4):553-566.
- [9] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision D. 01 [M]. Pittsburgh PA: Gaussian Inc, 2003.
- [10] Nicholas J B , Hay B P, Dixon D A. Ab initio molecular orbital study of cation – π binding between the alkali – metal cations and benzene [J]. Journal of Physical Chemistry A, 1999, 103(10):1394 – 1400.
- [11] Bader R F W. A quantum theory of molecular structure and its applications [J]. Chemical Reviews, 1991, 91 (5):893-928.