引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2716次   下载 145 本文二维码信息
码上扫一扫!
分享到: 微信 更多
改进差分进化在前馈神经网络训练中的应用
沈洪远,李志高,王俊年,吕铭晟
湖南科技大学 信息与电气工程学院,湖南 湘潭 411201
摘要:
分析了误差反传算法,将改进差分进化算法和神经网络结合,采用常数变异交叉与自适应变异交叉的混合策略对网络的权值和阈值进行训练.并用2个典型问题对该网络和误差反传网络进行仿真对比.结果表明:经改进差分进化算法训练的神经网络,收敛速度快、泛化性能好.
关键词:  差分进化  神经网络  反向传播算法
DOI:
分类号:TP18
基金项目:国家自然科学基金项目(60974048);湖南科技大学博士启动基金项目(E51066)
Modified differential evolution in the application of feedforward neural network training
SHEN Hong-yuan,LI Zhi-gao, WANG Jun-nian, LV Ming-cheng
School of Information and Electrical Enginering,Hunan University of Science and Technology,Xiangtan 411201,China
Abstract:
Based on the error back propagation algorithm, the Modified Differential Evolution(MDE) with neural network,the mixed strategies of constant variation crossover and adaptive crossover mutation was combined were adopted to practice the weights and threshold in the network, and the two typical problems were issued by the simulation contrast of this network and the error back propagation network. The results demonstrate that the neural network with modified differential evolution algorithm training has fast convergence speed and good generalization performance.
Key words:  differential evolution  neural network  back propagation algorithm