引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2844次   下载 0 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种改进人工鱼群算法对BP神经网络的优化研究
龚波,曾飞艳
湖南科技大学 计算机科学与工程学院,湖南 湘潭 411201
摘要:
针对BP神经网络存在易陷入局部极值的缺陷,提出一种基于改进的人工鱼群算法优化的BP神经网络.先用改进的人工鱼群算法优化BP神经网络的初始权值和阀值,然后再执行BP算法训练BP神经网络的权值和阀值.函数拟合仿真实验表明该优化方法提高了BP神经网络的泛化性能.
关键词:  BP神经网络  人工鱼群算法  优化  仿真
DOI:
分类号:TP18
基金项目:湖南省自科基金资助项目(13JJ3083);湖南省教育厅青年项目(13B020)
A research on the improvement of artificial fish algorithm and its optimization on BP neural network
Gong Bo,Zeng Feiyan
School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201,China
Abstract:
Aiming at the defect that BP neural network easily falls into a local extremum, an optimized BP neural network was proposed that based on modified artificial fish algorithm. First, the initial weights and threshold were optimized through improving artificial fish algorithm. Then it implemented BP algorithm to train the weights and values of BP neural network. Finally, it is proved that the proposed optimization method improves the generalization performance of BP neural network according to function fitting simulation experiments.
Key words:  BP neural network  AFSA  optimization  simulation
湖南科技大学学报(自然科学版)
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载  
分享到: 微信 更多
摘要:
关键词:  
DOI:
分类号:
基金项目:
Abstract:
Key words: