基于深度重提取的三维重建
DOI:
作者:
作者单位:

南京信息工程大学 电子与信息工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学(61971167)


3D Reconstruction based on depth re-extraction
Author:
Affiliation:

School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于深度学习的三维重建在生活中的许多领域都有应用,但当前绝大多数的研究在特征提取采用普通卷积,普通卷积对弱纹理和无纹理地区特征提取有限,容易模糊,使细节不清晰,影响重建结果。因此提出了一种基于深度重提取方法。首先为了解决普通卷积在低纹理区域的提取错误,提高重建精度,引进一种自适应特征聚合模块,利用可变卷积核的特点,使其在低纹理区域能够自适应的增大卷积核的感受野,在纹理丰富的区域减小感受野。其次,为了聚合不同尺度信息,丰富特征提取信息,使得最终的重建精度有所优化,引进了多空间空洞卷积模块。最后,经过与多组研究对比,所提方法对于低纹理区域的特征提取有较大优化,最终的重建精度也有所提升,整体性提升了3.4%,可适用于大多数场景。

    Abstract:

    Deep learning based 3D reconstruction has been applied in many fields of daily life, but the vast majority of current research uses ordinary convolutions for feature extraction. Ordinary convolutions have limited ability to extract features from weakly textured and non textured areas, making them prone to blurring and blurring details, which affects the reconstruction results. Therefore, a depth based re extraction method is proposed. Firstly, in order to solve the extraction errors of ordinary convolution in low texture areas and improve reconstruction accuracy, an adaptive feature aggregation module is introduced, which utilizes the characteristics of variable convolution kernels to adaptively increase the receptive field of convolution kernels in low texture areas and reduce the receptive field in textured areas. Secondly, in order to aggregate information at different scales, enrich feature extraction information, and optimize the final reconstruction accuracy, a multi-space dilated convolution module was introduced. Finally, after comparing with multiple studies, the proposed method has significantly optimized feature extraction in low texture areas, and the final reconstruction accuracy has also been improved, with an overall improvement of 3.4%, making it suitable for most scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-11-24
  • 最后修改日期:2024-04-08
  • 录用日期:2024-04-09
  • 在线发布日期: