基于Cholesky分解的LSSVM在线学习算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金(10971060);湖南省科学技术厅项目(2011FJ6033)


An online learning algorithm for LSSVM based on Cholesky factorization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对最小二乘支持向量机(LSSVM)用于在线建模时存在的计算复杂性问题,提出一种LSSVM在线学习算法.首先引入了基于Cholesky分解求LSSVM的方法,接着根据在线建模期间核函数矩阵的更新特点,将分块矩阵Cholesky分解用于LSSVM的在线求解,使三角因子矩阵在线更新从而得出一种新的LSSVM在线学习算法.该算法能充分利用历史训练结果,减少计算量.仿真实验显示了这种在线学习算法的有效性.

    Abstract:

    Aiming at the computational complexity of least squares support vector machine(LSSVM)’s online modeling, an online learning algorithm for LSSVM was proposed. First, the solution of LSSVM through the Cholesky factorization was introduced, then the Cholesky factorization of partitioned matrix was applied to the online solution of LSSVM according to the updating character of kernel function matrix during online modelling, and triangle factor matrix was renewed online, consequently, a novel online learning algorithm for LSSVM was obtained. The improved learning algorithm can make full use of the historical training results and reduce the computation amount. The numerical simulation results the validity of the online learning algorithm for LSSVM.

    参考文献
    相似文献
    引证文献
引用本文

蒋星军,周欣然,唐钊轶.基于Cholesky分解的LSSVM在线学习算法[J].湖南科技大学学报(自然科学版),2013,28(4):74-77

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-01-08