Ito型随机抛物型神经网络的指数稳定性
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

广州市属高校科技计划资助项目(08C018)


Exponential stability of It〖AKo^〗 stochastic parabolic neural networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由高斯白噪声驱动的Ito型随机抛物型神经网络的稳定性,利用随机Lyapunov稳定性理论,Halanay不等式、改进的积分不等式,得到了与扩散项及时滞相关的稳定性判据,该条件在实际中容易验证,最后给出了数值算例,验证所得结果的有效性.

    Abstract:

    A class of Ito stochastic parabolic neural networks model was considered. The exponential stability condition of the systems was developed by using stability theory of stochastic system and improved integral inequality. The conditions were diffusion-dependent, which was clearly more accurate than the Poincare-type inequality in previously reported literatures. Finally, a numerical simulation example was provided to illustrate the feasibility and effective of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

赵碧蓉. Ito型随机抛物型神经网络的指数稳定性[J].湖南科技大学学报(自然科学版),2014,29(4):79-83

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-12-23