基于用户兴趣的动态近邻协同过滤算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

湖南省自然科学基金资助项目(2017JJ2081);湖南省教育厅科学研究资助项目(17C0646)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了帮助人们从大量互联网资源中找到感兴趣的信息,推荐系统由此而生.其中,应用最广泛,也是最早出现的推荐算法包括协同过滤算法,但是该算法还存在着许多不足之处.该算法主要考虑用户的评分数据,未能结合项目进行考虑,同时在选取当前用户的最近邻用户时,通常统一规定了近邻用户数目,没有结合每个用户的实际数据,导致推荐的效果无法取得最优.因此,本文在充分考虑用户评分的情况下,还结合项目信息加入了用户的兴趣偏好,提出了一种基于用户兴趣的动态近邻协同过滤算法.综合用户的标签数据和评分数据来计算相似度,可以很好的缓解仅依靠评分数据带来的稀疏性问题.同时在得到用户之间的相似度之后,设定2个阀值,分布选取最近邻用户.只有当用户间相似度超过阈值,该用户才会被选择为最近邻的用户,动态的找到每一个用户的严格最近邻用户.通过实验,与常用的协同过滤算法相比,本文提出的算法推荐的误差更小,并且为以后的研究工作奠定了基础.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

陈汝,符琦*.基于用户兴趣的动态近邻协同过滤算法[J].湖南科技大学学报(自然科学版),2018,33(1):63-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-06-29