一种改进Harris角点检测的目标跟踪方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(61671222;61304249)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对传统粒子滤波目标跟踪算法在目标被遮挡或背景色与目标相似情况下出现目标跟踪定位偏差大甚至丢失目标的缺陷,本文提出一种改进的Harris角点检测的目标跟踪方法.该方法首先提出一种改进Harris角点检测算法,利用双阈值法,选定1个大阈值和1个小阈值,从而极大的减少了角点数量,并利用SUSAN思想去除伪角点;然后依据HSV颜色模型对环境光照变化不敏锐的特点,对检测到的角点建立HSV颜色模型,以鼠标所选定的矩形中心,矩形宽度和矩形高度作为状态量,以HSV颜色直方图作为观测值,建立合适的粒子滤波算法数学模型,实现对目标的有效跟踪.实验结果表明:即使在目标与背景颜色相似或被遮挡的情况下,该算法仍然能够准确的跟踪目标,达到降低环境因素对目标跟踪影响的目的.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

金钊,伍雪冬*,龚昊,唐风高.一种改进Harris角点检测的目标跟踪方法[J].湖南科技大学学报(自然科学版),2018,33(3):86-92

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-10-10