摘要:针对SIFT算法特征描述符计算复杂、时间效率较低的问题,提出了一种改进的SIFT算法,并将其应用于无人机倾斜影像匹配.算法首先利用SIFT算法进行特征点检测,基于BRISK描述符对提取的特征点进行描述生成其特征描述符,并基于Hamming距离作为特征匹配的相似性测度,在此基础上,利用比值提纯法(NNDR)进行粗匹配,最后采用RANSAC算法并结合均方根误差(RMSE)进行约束,对粗匹配结果进行筛选,剔除错误匹配点对,得到精确匹配结果.为了验证该算法的有效性,利用4组无人机影像数据进行实验并与SIFT算法和SURF算法进行比较,结果表明:算法在保证较高准确率的同时能够得到亚像素级的精度,且能够有效地提升时间效率,具有较好的稳定性.