基于改进SIFT算法的无人机影像匹配
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(41271444)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对SIFT算法特征描述符计算复杂、时间效率较低的问题,提出了一种改进的SIFT算法,并将其应用于无人机倾斜影像匹配.算法首先利用SIFT算法进行特征点检测,基于BRISK描述符对提取的特征点进行描述生成其特征描述符,并基于Hamming距离作为特征匹配的相似性测度,在此基础上,利用比值提纯法(NNDR)进行粗匹配,最后采用RANSAC算法并结合均方根误差(RMSE)进行约束,对粗匹配结果进行筛选,剔除错误匹配点对,得到精确匹配结果.为了验证该算法的有效性,利用4组无人机影像数据进行实验并与SIFT算法和SURF算法进行比较,结果表明:算法在保证较高准确率的同时能够得到亚像素级的精度,且能够有效地提升时间效率,具有较好的稳定性.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

张培佩,王永波*,宋伟.基于改进SIFT算法的无人机影像匹配[J].湖南科技大学学报(自然科学版),2019,34(2):90-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-09