基于Spark的大规模文本KNN并行分类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

安徽省自然科学基金资助面上项目(1408085MF126)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在使用KNN算法进行大规模文本分类,需要处理频繁的迭代运算,针对现有Hadoop平台迭代运算效率较低的问题,本文提出一种基于Spark平台的并行优化KNN算法.主要从3个方面对算法进行优化,首先,对于训练数据集通过剪枝算法控制有效数据的规模,从而减少迭代运算的次数;其次,针对高维数据集采用ID3算法利用信息熵进行属性降维,减少文本相似度的运算量;最后,使用Spark并行计算平台,引入内存计算最大限度地减少了迭代运算的I/O次数,提高处理速度.通过实验,与常用的KNN算法相比,基于Spark的KNN文本并行分类算法在加速比、扩展性等主要性能指标上表现较优,能够较好地满足大规模文本分类的需求.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

李宏志*,李苋兰 ,赵生慧.基于Spark的大规模文本KNN并行分类算法[J].湖南科技大学学报(自然科学版),2020,35(1):90-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-04-02