基于深度学习的混合主题模型应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家重点研发计划课题资助(2017YFD0301303);安徽省教育厅自然科学重大项目资助(KJ2017ZD53); 安徽省教育厅自然科学重点项目资助(KJ2017A799)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在线社交网络的快速发展得益于主题模型的广泛应用.然而,目前几种典型的主题模型存在需要手动调参、语义连贯性不足、特征提取不充分和样本效率低等问题.对此,构建主题模型时利用深度学习技术来进行主题划分,以BiLSTM-CNN模型框架为基础,并在主题特征提取进行主题划分阶段引入“作者-主题”模型进一步优化框架,从而提出了一种混合主题模型Hybrid-Topic Model (简称HTM).将LDA,CNN,BiLSTM-CNN和HTM这4种主题模型应用于2组不同场景的数据集,并对结果进行对比分析.分析表明,在主题分类效果和内容困惑度方面,HTM主题模型的效果明显优于现有模型.此外,该模型在样本使用效率和模型迁移学习能力方面也有出色的表现,为后期研究指明了方向.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

万家山*.基于深度学习的混合主题模型应用[J].湖南科技大学学报(自然科学版),2020,35(3):102-109

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-10-14