融合改进的内容与协同过滤的博客推荐方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

安徽省自然科学基金资助项目(1408085MF126)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在中文博客系统中,受限于用户特征信息的稀少,使用协同过滤算法的准确率往往不高,而基于内容推荐算法,又会影响推荐结果的多样性.因此,文章提出了一种融合改进的内容推荐与协同过滤相结合的推荐方法.首先,采用协同过滤算法发现用户的潜在兴趣并通过谱聚类改进协同过滤的相似度计算,提高处理效率;其次,基于改进的内容的推荐算法构建用户的既有兴趣模型,计算潜在推荐内容与既有兴趣模型的匹配度;最后,通过逻辑回归算法融合协同过滤与内容推荐的结果.实验结果显示,文章所提出的推荐方法相对于单一的协同过滤和内容推荐可以显著提高推荐的结果的准确率和召回率,具备良好的推荐效果.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

李宏志*,李苋兰.融合改进的内容与协同过滤的博客推荐方法[J].湖南科技大学学报(自然科学版),2021,36(3):104-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-29