多尺度注意力聚合图卷积的高光谱分类
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

山东省重点研发计划资助项目(2019GGX105001)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在遥感图像分类任务中,考虑到传统卷积滤波器受限于接受域,不能有效地捕获地物丰富的细节信息的缺陷,同时,为加强邻域内像元之间的多尺度时空交互,提出一种多尺度注意力聚合图卷积的高光谱图像分类方法.首先,为了增强遥感图像中地物的时空表征能力,构建不同尺度的拓扑图,以实现时空信息的建模.其次,利用图卷积神经网络加强相邻节点之间的交互性,提高时空信息的汇聚和传递,同时,利用自注意力引导层自适应地细化多尺度信息,以捕捉时空信息在通道之间的相关性和位置信息.此外,相邻节点特征差的范数为节点之间的边权重,而层之间信息的传递采用动态聚合方式.试验结果表明:所提出的分类框架在Indian Pines基线数据集上的总体分类精度(OA)、平均分类精度(AA)和卡帕系数(Kappa)分别为(99.80±0.15)%, (98.30±1.28)%和(99.77±0.17)% .

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

孙学进*,李靖,曹绍华,王娟娟.多尺度注意力聚合图卷积的高光谱分类[J].湖南科技大学学报(自然科学版),2022,37(4):94-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-14