基于集成LSTM的泵站供水流量智能预测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助重大项目(61890932)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    城市二次加压供水泵站的供水流量预测是实现清水池补水、蓄水的依据,也是保证居民用水安全的前提.针对泵站供水流量受线性、非线性和时变等多种因素影响,导致传统模型的预测效果较差的问题,提出了一种基于长短时记忆网络与整合移动平均自回归模型相结合(LSTMARIMA)的方法,建立泵站供水流量集成预测模型.首先将获取到的供水流量数据按照时间日期进行打标签及预处理;然后将处理后的数据分别放入LSTM模型和ARIMA模型中进行训练与测试,通过统计分析2个模型的历史预测准确次数来确定它们各自的基本权重,并在预测过程中自适应修正权重;最后,基于对应权重将2个模型集成,得到最终的供水流量预测结果.某供水泵站的现场数据验证表明:本文方法所得结果与其他2种方法所得的预测结果在均方根误差(RMSE)上分别降低了51.24%和66.52%,在平均绝对误差(MAE)上分别降低了49.84%和67.02%,验证了模型的有效性.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

袁卓异,李勇刚*.基于集成LSTM的泵站供水流量智能预测方法[J].湖南科技大学学报(自然科学版),2023,38(1):68-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-24