采用混合算法优化神经网络滑模控制的机器人跟踪误差
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了避免机器人关节角位移受外界影响,提高运动轨迹的跟踪精度,采用混合算法优化神经网络滑模控制器,并对优化后的控制器进行仿真验证.建立机器人平面简图模型,利用拉格朗日定理推导出机器人关节运动方程式,采用神经网络算法构建RBF神经网络自适应滑模控制系统.为了增强控制系统的稳定性,削弱外界波形对机器人运动轨迹的干扰,利用粒子群算法和差分进化算法在线优化RBF神经网络滑模控制律参数,设计了改进RBF神经网络滑模可调参数的自适应控制律,保证机器人控制系统的稳定性.通过MATLAB软件进行仿真实验,并且与优化前机器人关节角位移输出误差形成对比.仿真结果显示:随着干扰波形幅度的增大,采用神经网络滑模控制器,机器人关节输出角位移误差逐渐增大,系统不稳定,而采用混合算法优化神经网络滑模控制器,系统反应速度较快,机器人关节输出角位移误差较小.机器人采用混合算法优化神经网络控制器,能够提高控制系统的抗干扰能力,稳定性较好、输出精度较高.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

孙浩.采用混合算法优化神经网络滑模控制的机器人跟踪误差[J].湖南科技大学学报(自然科学版),2023,38(3):34-41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-10